
2007 Hacker Challenge Report

Background

The challenge presented in this exercise is to reverse engineer a 32-bit Windows binary
such that we are able to:

1) Provide and analysis of the software protection mechanisms implemented by
the author(s);

2) Determine how to bypass the program’s password requirements;
3) Achieve objective 1 – reproduce the formula for calculating “10.9319”; and
4) Achieve objective 2 – break the upper limit on the 210.5 value from data.txt.

The details of how these goals were completed successfully can be found in the
remainder of this document, where we attempt to describe the methodology in a
thorough, but clear and concise manner.

The most useful skill learned during phase 1 of the challenge was gaining a greater
practical familiarity with the Intel x86 FPU and its related instructions, registers, control
flags, and status flags.

Attack Narrative

The first half of this section will describe the generic software protection mechanisms
that were observed throughout the challenge. In particular, this will identify the anti-
reverse-engineer and anti-debugging code. Each observation will be accommodated
by a brief analysis of the methods used to defeat them.

In the second half, the methodologies for achieving the two objectives will be
presented, including the appropriate disassembly and script source code. This is where
the specific software protection mechanisms are discussed, in other words – the code
directly relevant to meeting the objectives.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 1

Part I: Generic Software Protections

Software Protection Mechanism: “Packed/Obfuscated Sections”

The final.exe sample is packed with a propritary algorithm that is unknown to both open
source and closed source packer detection signatures. We know it is packed due to
several indications, which are outlined below and highlighted in the screen shot.

1) The start address (ImageBase + AddressOfEntryPoint) points to a suspicious , out-
of-the-ordinary section named “JR” at the end of the binary.

2) The only visible imports are from Kernel32.dll. This is not suspiciuos per se,
especially based on the program’s described behavior, but with other
correlating evidence, it highly suggests that the binary is packed.

3) There are very few visible strings in the unaltered final.exe program.
4) The instructions at the start address weave and jump around dramatically to

properly decode the .text segment, which is otherwise an uninterpretable chunk
of data.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 2

To defeat the custom packing solution, we could engage several methods, such as the
following:

1) locating OEP via static analysis or dynamic tracing (debugging) of the algorithm;
2) setting a section-based break-on-execute (see OllyBonE);

3) using generic OEP-locating software such as PEiD or IDA Pro’s “Universal

Unpacker” plugin;
4) using an API breakpoint within a module such as Kernel32.dll.

In practice, we used the later method, by setting a breakpoint on
Kernel32@GetSystemTimeAsFileTime. One might use a tool such as API Monitor to detect
which API calls are made early in the program’s execution. APIs such as
Kernel32@GetVersion(...) are normally safe choices, but in this case, the one we
selected is called first.

After letting the code unpack itself, a tool known as OllyDbg PE Dumper v3.01 by FKMA
was used to produce a sample of the executable which we could load into IDA Pro for
further analysis. In these situations, it is frequently required to fix-up the dumped
executable’s import tables (see Import REConstructor), however for this challenge, it is
not necessary.

Software Protection Mechanism: “Kernel32@IsDebuggerPresent()”

The program makes several calls to Kernel32@IsDebuggerPresent and behaves
differently if the API returns true.

.text:00407077 call ds:IsDebuggerPresent

.text:0040707D test eax, eax

.text:0040707F jz short not_being_debugged

.text:00407081 push 0FFFFFFFEh ; uExitCode

.text:00407083 call exit_sorry

To defeat this protection, it would be possible to set an API breakpoint on the call, and
manually change the return value to false each time it is called. It would also be
possible to install and enable the OllyDbg plug-in for hiding the debugger from
Kernel32@IsDebuggerPresent. However, since the final.exe sample also exhibits in-line
debugger detection (using the exact same code as the API call), then the more
efficient bypass is to simply navigate to [fs:30] of the program and change the 0x1 byte
to 0x0. This solves the problem altogether. Below is an example of the in-line detection
and a screen shot of how to modify the byte at run-time.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 3

http://www.joestewart.org/ollybone/
http://peid.has.it/
http://www.apimonitor.com/
http://www.woodmann.com/ollystuph/index.php
http://malwareanalysis.com/CommunityServer/blogs/geffner/archive/2005/07/26/5.aspx

.text:00407039 mov eax, large fs:30h

.text:0040703F movzx eax, byte ptr [eax+2]

.text:00407043 or al, al

.text:00407045 jz short bypass_debug_check

Software Protection Mechanism: “Time-based Debugger Detection”

At several points throughout execution, the program calls Kernel32@GetTickCount at
point A and again at point B, then performs a subtraction to determine how long it took
the processor to get from point A to point B. In these cases, if it takes longer than a
specified amount of time, then it is assumed that a debugger is controlling EIP and
behaves differently. Below is an example of how this code appears in the disassembly.
The time to beat is 200ms.

.text:0040129C call edi ; GetTickCount

.text:0040129E mov ebx, eax

.text:004012C1 call edi ; GetTickCount
.text:004012C3 sub eax, ebx
.text:004012C5 cmp eax, 7D0h
.text:004012CA jbe short loc_4012D8

To defeat this protection, it is possible to either manually change the return result (in
eax) from Kernel32@GetTickCount during a debugging session, or it is possible to
temporarily reverse the logic on the jbe condition so that it behaves in the opposite
manner. See the next section on why this change to the executable code should be
reverted immediately afterward.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 4

Software Protection Mechanism: “Section Checksums and Validation”

On two occasions during the flow of the program, it computes a checksum of data in
the .text section and compares it with a hard-coded 32-bit value. If an analyst makes
any modifications to the program’s data (including instructions, operands, logic, etc)
then the test will fail. Furthermore, the second checksum actually evaluates the state of
the first checksum’s code, to make sure the checksum function itself isn’t altered.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 5

This protection can be defeated by simply being careful and not making any changes
to the .text segments without reverting them.

Software Protection Mechanism: “Pointer Encoding”

The program implements the Kernel32@EncodePointer and Kernel32@DecodePointer
API calls to obfuscate function pointers at run time. While these APIs are designed for
software security (preventing an attacker from gaining control of EIP by overwriting a
function pointer) and not specifically anti-reverse-engineering, it often accomplishes
both goals. This is especially troublesome for following code execution during static
analysis, because without a careful trace of parameters, it is difficult to determine
where EIP will land after the next call. An example of this usage by final.exe is shown
below.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 6

The API calls use a pseudo-random XOR key stored in the process information block to
encode and decode pointers. It was not necessary to defeat this protection
mechanism in order to complete the objectives for the challenge.

Part II: Specific Software Protections

Software Protection Mechanism: “Defeating the Password Requirement”

While generating a password for the program is not one of the two main objectives for
phase 1, it is required to make the program execute properly (without modifying the
binary). If final.exe is executed for the first time, it will complain that a valid password.txt
does not exist. Furthermore, if password.txt does exist, but without a valid password, it
will also complain.

Our defeat methodology for this step was rather simple. We navigated to the function
in IDA Pro which contains the strings “password.txt,” “Incorrect password…,” and “Thank
you” to examine the surrounding code. It was obvious to see in which direction of the
decision tree we need to go in order to encounter the “Thank you” statement instead
of the “Incorrect password” statement.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 7

The function call labeled get_content_switch leads to a sub routine that is used
throughout the program for multiple purposes. For processing the password content,
one of the parameters is a pointer to a NUL-terminated character string composed of
the first two bytes in password.txt. We realized this by debugging the program with a
password of “abc” and observing the function parameters, one of which was “ab”.

At this point, it was evident that the output of the formula in the node labeled
test_password_content above is entirely dependent on only the first two bytes of the
password. Therefore, a simple program helped brute force a valid password while we
focused on the next objectives. The Perl code is shown below.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 8

#!/usr/bin/perl

This program brute forces the contents for password.txt that
we need to gain execution to final.exe. Its based on the idea
that when the program runs, it only sends the first two bytes
of password.txt to the validation routine.

#.text:00409287 push 0Ah
#.text:00409289 push 0
#.text:0040928B push [esp+8+arg_0] ; first two bytes of file
#.text:0040928F call sub_4111AF

Therefore, we can know that if this function *ever* returns in
support of the file's contents, then it will be based on only the
first two bytes. Move through an array such as:

unsigned char array[0xff][0xff]

As soon as a valid combination is detected through output redir
and capture, then we break and print the magic bytes. Note:
output is based in decimal, not hex.

perl brute.pl
You win: [52][50]

sub change_pass {
 my ($i, $j) = @_;
 open(PASS, ">password.txt");
 binmode(PASS);
 print PASS chr($i), chr($j);

close PASS;
}

sub validate_pass {
 return 1 if (`final.exe` =~ m/thank/i);
 return 0;
}

BRUTE: foreach $i (0..256) {
 foreach $j (0..256) {
 change_pass($i, $j);
 if (validate_pass()) {
 print "You win: [$i][$j]\n";
 last BRUTE;
 }
 }
}

This program, which is headed by its documentation and sample output, was successful
in generating a valid password.txt value (starting with “42”), and allowed us to proceed
into the next steps of the challenge.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 9

Software Protection Mechanism: “Reproduce the FP Algorithm”

Now that the password is accepted, the final.exe program prints a series of numbers to
the terminal. The objective 1 is to reproduce in pseudo code (C/C++) the formula
responsible for computing the floating point 10.9319 that is printed as the third element
of the first row:

We defeated this objective by first navigating to a point in the program where we were
confident about the 10.9319 having already been generated, and then worked
backwards. We did it this way because, well, that’s what reverse engineers do
sometimes.

For this case, our confidence point was the print statement used to display the value on
screen. Through debugging, we found code of interest just above the print statement,
and directly below the first checksum discussed previously. The code is shown below.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 10

In the image, we have labeled the local object variable as myfloat, and show that the
call edx instruction is an invocation of the object’s only method – compute_float. We
suspect that the local variable is an object and not a structure based on how it is
passed to the function in the ecx register, and how the function address is derived by
dereferencing the appropriate offset from the base of the local variable. This can
further be supported by investigating what appears to be the class constructor, which
initializes the members and assigns the proper offset into the function pointer. The code
is shown below.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 11

Now, with this background, we are in a nice position to tackle the objective. We need
to figure out three main components:

1) which members of the object are used in the computation;
2) the type, size, and exact values of those members that lead to 10.9319; and
3) the formula itself.

All of the components are equally simple, though a bit time consuming to determine.
We can learn the information for the first step by examining the compute_float function
and observing offsets from the base of the object that are used as input. At the same
time, we will learn their type and size by examining the instructions that handle them.
For example, if we see add eax, [esi+0xbc] then we know that the member at offset
0xbc is 32 bits in size. If we see fadd dbl_4248c0 then we can be relatively certain that
the global variable at address 0x4248c0 is 64 bits (a double) in size. We can cross-
reference this information with the code from the constructor that initializes the
members.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 12

As for component 3, the formula, we reverse engineered it into source code using the
disassembly provided by IDA Pro and two references for FPU instructions (“32/64-bit
Assembly Language Architecture” by James C Leiterman, and the online NASM
manual). Although only pseudo code is required for meeting the objective, we wrote
compile-able code to ensure that no mistakes existed in the formula. The program is
shown below. Note that this is not an exact reproduction of the code used within
final.exe but rather a functional equivalent.

#include <stdio.h>
#include <string.h>

// the "m" members are labeled by their offset within the objects as
// indicated in the reverse of the final.exe executable. For instance
// m98 is +0x98 from the start of the class.

// base object
class basefloat
{
public:
 basefloat() { }

 virtual void compute_float(void){ };

 double m98; // [out] stores 10.9319
 double ma0; // [out] stores 187.304
 double ma8; // [out] stores 23.1964
 int mb8; // [in] data_txt.m_0 -- parameter
 int mbc; // [in] data_txt.m_1 -- parameter
 int mc0; // [in] data_txt.m_2 -- parameter

};

// object which contains the equation for objective 1 (derived from the
basefloat class)
class myfloat : basefloat
{
public:

 myfloat() { }

 virtual void compute_float(void);
 virtual void initializeVectors(int a, int b, int c)

{ mb8 = a; mbc = b; mc0 = c; }

 double m28; // [in] -- parameter
 int m30; // [in] -- parameter

};

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 13

http://www.linuxmedialabs.com/nasm/html/nasmdoca.html
http://www.linuxmedialabs.com/nasm/html/nasmdoca.html

// constants (address of constant is indicated in the comment)
const double const_dbl_41E228 = 3.142857142857143; // 0x41E228
const double c0 = 1.10938; // 0x41E218
const double c1 = 8.267e-4; // 0x41E220
const double c2 = 1.6e-6; // 0x41E210
const double c3 = 2.574e-4; // 0x41E208
const double c4 = 4.5e2; // 0x41E1B8

// globals (address of global is indicated in the comment)
int g1 = 0x1f4; // 0x423068
double g2 = 0.0; // 0x4248C0
int g4 = 0xa; // 0x423070
int g3 = 0xa; // 0x42306C

void myfloat::compute_float()
{

 // phase I, object I equation
 m98 = ((g1 / (((c0 - ((mbc + mb8 + mc0) * c1))

+ ((mbc + mb8 + mc0)*(mbc + mb8 + mc0) * c2))
- (c3 * m30))) + g2)
- c4;

 // rest of the function which contains the P1O1 equation
 ma8 = (m98 / (g4 * g3)) * m28;
 ma0 = m28 - ma8;

}

// for completeness, this will allow the reader to test the accuracy of
// the equation reversed for objective 1.
int main (int argc, char * argv[])
{
 myfloat ns;

 /* configure input for generating the 10.9319 float */
 ns.initializeVectors(0x0a, 0x11, 0x08);
 ns.m30 = 0x21;
 ns.m28 = 200;
 g1 = 0x1ef;
 ns.compute_float();

 return 0;
}

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 14

Software Protection Mechanism: “Anti-Tamper: Remove the Upper Limit”

The second objective in phase 1 of the challenge is to remove the upper limit on the 8th
field from data.txt, such that the program treats values greater than 210.5 in the same
manner as it treats values equal to or less than 210.5. This would involve altering either
the program itself, or its input, to successfully print the two circled values (of the bottom
image) when 210.5 is increased to 220. The following images are taken from
README.doc of the challenge instruction sheet:

We were admittedly thrown off course a bit in this stage after having reversed the
formula that computes these numbers. We know that in this particular call to the
compute_float function, the object’s members which are uses as input in the
calculation, are initialized with the first, second, third, eighth (must be 220), and ninth
fields from data.txt. It was also evident through both static and dynamic analysis that
the global variables which serve as additional input to the computation are the same
as those used in other calls to compute_float, such as the one that generates 10.9319.
Based on this information, we mistakenly jumped to the conclusion that we could simply

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 15

brute force the 4 variable input fields until they resulted in 24.2433 and 195.7577. This
didn’t work, and it’s what we get for trying to take shortcuts.

Instead, we re-thought the attack method and decided to take a different approach.
It involved tracing the input value of 220 from the point the program first receives it from
data.txt until compute_float is called and then return values are printed on the screen.
Theoretically, we should be able to follow the value and determine exactly when it is
assigned to the appropriate object member (the double at offset 0x28) and figure out
its involvement in the upper limit.

Using the new approach, we located the approximate point where each value from
data.txt entered the program. They are gathered during a series of calls to the
get_content_switch function discussed previously in this report. After acquiring the
special 220 value, there is a call to the routine labeled ascii_to_float_st0 in the image
below. The label indicates that the function accepts an ASCII value (e.g. char * asc =
“220”;), converts it into a float, and loads it into FPU ST0.

The next operation involving the FPU is an fstp instruction which pops the value in ST0
into the local variable labeled special_float. At this point, special_float contains 220,
and so tracking its usage is most important to us. The value is reloaded onto the FPU
stack in the second of two fld instructions, the first of which loads the value at address
0x41e4d8. This is a global (and constant) 64-bit double that resides in the .rdata section
and is initialized to equal 210.5 – the very value that represents the upper limit.

The values in ST0 (210.5) and ST1 (220) are then compared with fcom st(1), and based
on the value left in the FPU status word after this comparison, the smaller of the two is
placed into ST0 by using either the fstp st instruction or fstp st(1) instruction (see the
conditional jump below). Nearing the end, the value that remains in ST0 is saved into
the double pointed to by esp. It is this value that survives the computations in order to
eventually end up the member at 0x28 of the object when compute_float is called.

In other words, if the input value is greater than the constant, then the input value is
reset to the value of the constant before being used. The observed behavior can be
summarized in a manner such as the following:

const double dbl_const_val = 210.5;
double dbl_input_val = 220;

if (dbl_input_val > dbl_const_val) {
 dbl_input_val = dbl_const_val;
}

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 16

To defeat this protection, it crossed our minds to change the flow of execution such
that the logic is reversed, allowing the larger number of the two to be selected.
However, then we would need to adjust the logic of the two checksum functions also.
Furthermore, this would require studying the unpacking algorithm closer, in order to
make all three changes to the unpacked binary.

It was a better idea, however, to alter the value of the constant, which as mentioned
resides in the .rdata section and is not included in the run-time checksum detections or
the packing algorithm. Therefore, we can easily make a change to the program with a
hex editor such that the constant itself is the maximum value of a double, and therefore
there is no upper limit to the 8th value of data.txt that will result in it being treated
differently than lower values.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 17

The final solution to this objective would be to replace the constant of 210.5 with the
DBL_MAX value from float.h:

#define DBL_MAX 1.7976931348623158e+308 /* max value */

Time to Break

Phase 1 of the challenge required an estimated 28-36 hours of work, split between two
individuals and across 5 days. Although the challenge started on August 27th,
unfortunately we didn’t begin until September, 3rd. All of the generic software
protection mechanisms that required defeat were broken within a very short time
period – 1 to 5 minutes each. The password protection was broken in a considerably
smaller amount of time (2-3 hours) than it took to reverse the formula and tamper with
the upper limit. We spent less than 30 minutes researching topics on the Internet, most
of which was related to FPU behaviors.

Tools Used

Our primary tools consisted of a debugger and disassembler. We have summarized the
tools below.

1) Immunity Debugger, OllyDbg, and associated plugins, for dynamic analysis of
the binary;

2) IDA Pro, for static and dynamic analysis of the binary;
3) PEInfo, for exploration of the binary’s sections and headers;
4) Microsoft Visual Studio C++ and GCC, for compilation of the formula;
5) Camtasia Studio SnagIT, for screen captures and manipulation;
6) UltraEdit and FlexHex, for investigation and modification of the binary on disk;
7) The Perl programming language and Cygwin environment;
8) Our eyes, brains, fingers, and sometimes feet.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 18

http://www.immunitysec.com/products-immdbg.shtml
http://www.ollydbg.de/
http://www.openrce.org/downloads/browse/OllyDbg_Plugins
http://datarescue.com/
http://msdn2.microsoft.com/en-us/vstudio/default.aspx
http://gcc.gnu.org/
http://www.techsmith.com/screen-capture.asp
http://www.ultraedit.com/
http://www.flexhex.com/
http://www.perl.org/
http://www.cygwin.com/

Conclusion

This phase of the challenge was fairly accommodating to our inquisitive nature and
thrill-seeking, problem-solving desires. The generic anti-reverse-engineering protections
were clearly not sufficient, and since the ability to defeat the specific protections relies
on the ability to bypass the generic ones, this is a weakness in the challenge. There are
several additional anti-debugging tricks that could increase the difficulty, such as
inspection of other registers (DR0-DR3), usage of other time-telling instructions (rdtsc or
Ntdll@NtQueryInformationProcess), and checking for signs of an active debugger
throughout the system (memory, file system, registry).

All of these listed options can be defeated as well, but in combination they can help
increase the adversary work factor involved in defeating the software protections. We
would recommend researching the protections implemented by Oreans Technologies
Themida, which provides even more options for protecting software from analysis
and/or modifications.

As for the specific protections, the authors of the software that implements these
protections should decide for themselves if they are sufficient, based on our most
accurate estimations of the time required to defeat them. It would be relative to the
worth of the software being protected. The amount of time we spent over the course
of 5 days is a lot for two individuals with full-time jobs, wives/girlfriends, and recently –
new pets. 5 days is not a lot for a company attempting to secure their proprietary
information from software pirates and criminal hackers.

Michael Ligh @ MNIN and Greg Sinclair @ NNL Software Page 19

http://www.oreans.com/
http://www.oreans.com/

