
Hacking the Packer

I. Introduction
II. Observing Code Obscurities

III. Stripping Down Source Code
IV. Hacking the Packer
V. Producing Packed Samples

VI. Possible Signature Set
VII. Extended Kernel32 Resolution

VIII. C Representation of Resolver

Introduction

I was checking out a packed file and came across a cool way to resolve Kernel32 exports.
This led to an interest in detecting packer-specific signatures, which in turn led to a fun
registration-process hacking exercise.

Observing Code Obscurities

The code below is from the entry point of the packed file. It derives the base address of its
own image with formula:

ImageBase = AddrLastInstruction - (AddrEntryPoint +
OffsetToLastInstruction)

For example, with values filled in:

0x00400000 = 0x004FC01D - (0x000FC000 + 0x1D)

The formula may not work for executables packed or compiled differently...but lucky for this
piece of code, it doesn't have to worry about any others besides its own.

.crt:004FC017 code_begin:
.crt:004FC017 push ebp
.crt:004FC018 call $+5
.crt:004FC01D pop ebp
.crt:004FC01E sub ebp, 1Dh
.crt:004FC024 mov eax, ebp
.crt:004FC026 push ebp
.crt:004FC027 pusha
.crt:004FC028 pushf
.crt:004FC029 sub eax, [ebp+7FCh]
.crt:004FC02F mov [ebp+7E8h], eax

Starting at the ImageBase in memory, it starts to scan for values at known offsets, based on
the PE header format. In particular, it locates the array of
IMAGE_IMPORT_DESCRIPTOR structures and loops through reading the value of the
Name1 member (pointer to ASCII name of DLL to import). For each result, it compares
that ASCII string with "kernel32.dll" (non-case sensitive). If it encounters a match, it saves
the base address of the IMAGE_IMPORT_DESCRIPTOR structure that referenced the
string and re-uses it to access the FirstThunk member.

After the PE loading process, the FirstThunk member becomes a component Import
Address Table and the program works with this information to resolve the rest of the
required functions.

Stripping Down Shell Code

The code appears to be written in straight-up assembly and also has a strange function
convention that returns true/false by setting or clearing the CPU's carry flag. Return values
are checked with jb instructions, which jump if the flag is set. This is a cool way to lighten up
the size of code. For example, rather than what I've recently been seeing, which takes at least
18 bytes...

call function
cmp eax,0
jn/z short condition_false
function:
 // do something
 mov eax,0
 retn

char sc[] =
“\xE8\x07\x00\x00\x00\x3D\x00\x00\x00\x00\x75\x06\xB8\x00\x00\x00\x00\x
C3”

...the observed method from this packed file only takes 9 bytes:

call_function
jb short condition_false
function:
 // do something
 clc
 retn

char sc = “\xE8\x02\x00\x00\x00\x72\x02\xF8\xC3”

Although the code might not work well as shell code (because of the NULL bytes), it
reduces the size in bytes by 50% while maintaining the same type of functionality. This was
pretty interesting and made me want to figure out if this procedure is custom or the result of
a commercial file packer.

Hacking the Packer

A subtle string from the packed executable identified a suspect product, however the
company’s website is offline and their utility is pretty rare. To be sure it wasn’t just a
meaningless string; I wanted to pack a file using the identified product and compare results.

A copy turned up archived on a Polish FTP server, as located by Google. The only problem
was that the installation required a password to even unlock the 30 day trial. Since passwords
only come via email after registering, and registering cannot be done since the website is
offline, the only chance at using this program in the next few minutes is to hack it.

The first thing to do is find out where the user’s input ends up after entering a password. I
typed 255 ‘k’ characters and let the program reach its denial stage, at which point the process
was still running.

Then I attached to it with OllyDbg, brought up the Memory map and searched for a long
string of k’s - one showed up on the stack of the main thread:

Note that only 127 of my ‘k’ characters made it into the buffer, with a trailing NULL byte.
This must mean that there is a 128-byte local buffer declared. Since there are a relatively
small amount of Windows API calls that process input from dialog items, I checked the
installer’s input table and sure enough there are about 15 calls to User32’s
GetDlgItemTextA().

It was easy to scan through these calls and determine which one operated with a buffer size
of 80h (128d). Luckily, there was only one possibility and the flow of execution was pretty
clear. Right after GetDlgItemTextA(), a jump is taken if the return value is false or NULL.
Therefore, the target of that jump can be labeled as an error condition. Now we know the
jnz at 0040915Ch needs to fail or be switched to a jz in order to circumvent the checks. Here
is the code:

.text:0040912A GetPasswordFromUser:
.text:0040912A lea eax, [ebp+Data]
.text:00409130 push 80h ; nMaxCount
.text:00409135 push eax
.text:00409136 push 410h
.text:0040913B push edi
.text:0040913C call ds:GetDlgItemTextA
.text:00409142 test eax, eax
.text:00409144 jz short error_condition
.text:00409146 lea eax, [ebp+Data]
.text:0040914C push eax
.text:0040914D push dword_4290B8
.text:00409153 call process_password()
.text:00409158 pop ecx
.text:00409159 test eax, eax
.text:0040915B pop ecx
.text:0040915C jnz short error_condition ; want to bypass
.text:0040915E lea eax, [ebp+Data]
.text:00409164 push eax
.text:00409165 push offset aUnlock ; "unlock"
.text:0040916A call sub_402B04

Here is a screen shot of modifying the jnz to a jz. Once this is done, regardless of the
password entered, installation is allowed to proceed.

So I was considering ways to permanently patch the installer. First, I could find the raw
offset to the jnz and overwrite it with a jz using a hex editor. That seemed easiest, except the
program has a built-in CRC check and won’t run if its own binary has been modified. That
would be just as easy to crack, but I’d rather finally use the tool and produce a packed
executable for analysis since that was my whole purpose in the first place.

Producing Packed Samples

It turns out that even after getting the 30-day demo installed; the program writes protected
versions of packed executables (they don’t run) until it is registered. This is OK since I’m
not using it to produce any packed executables that I expect to run. All I want to see are
signatures around the packed executable’s entry point, and that can be done without running
it. Along the way to creating some samples, I noticed that there is a threshold between when
the packer is efficient and when it actually increases the output file size. Note the smaller file
at 36kb grew to 48kb when packed. However, the 548kb sample was reduced to 269kb.

Figure 1: packing a 36kb file.

Figure 2: packing a 548kb file.

Possible Signature Set

A (not-necessarily unique) correlation can be made at this point between the new file and the
original one. Note the similarity in code at the entry point:

Section:004BD000 start proc near
Section:004BD000 push ebp
Section:004BD001 call $+5
Section:004BD006 pop ebp
Section:004BD007 sub ebp, 6
Section:004BD00A mov eax, ebp
Section:004BD00C push ebp
Section:004BD00D pusha
Section:004BD00E mov [ebp+3410h], ebp
Section:004BD014 sub eax, [ebp+33EBh]
Section:004BD01A mov [ebp+249Fh], eax

The exact bytes around the entry point of programs packed with this tool will differ, because
the section sizes and offsets will change. The instructions and registers would likely remain
the same across most versions of the packing tool. It is also likely that a longer, more
accurate signature can be derived for this packer.

Extended Kernel32 Resolution

.crt:004FC404 ; ¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦
.crt:004FC404
.crt:004FC404 find_kernel32_import proc near
.crt:004FC404 mov eax, [ebp+7E8h] ; ImageBase
.crt:004FC40A mov edi, [eax+3Ch]
.crt:004FC40D add edi, eax
.crt:004FC40F mov edx, [edi+80h]
.crt:004FC415 add edx, eax
.crt:004FC417
.crt:004FC417 top_loop:
.crt:004FC417 cmp dword ptr [edx+0Ch], 0
.crt:004FC41B jz short loc_4FC47D
.crt:004FC41D mov ebx, [edx+0Ch]
.crt:004FC420 add ebx, eax
.crt:004FC422 cmp byte ptr [ebx], 'k'
.crt:004FC425 jz short loc_4FC42E
.crt:004FC427 cmp byte ptr [ebx], 'K'
.crt:004FC42A jz short loc_4FC42E
.crt:004FC42C jmp short increment_ptr_and_cont
.crt:004FC42E ; ---
.crt:004FC42E
.crt:004FC42E loc_4FC42E:
.crt:004FC42E
.crt:004FC42E cmp dword ptr [ebx+1], 'enre'
.crt:004FC435 jz short loc_4FC442
.crt:004FC437 cmp dword ptr [ebx+1], 'ENRE'
.crt:004FC43E jz short loc_4FC442
.crt:004FC440 jmp short increment_ptr_and_cont
.crt:004FC442 ; ---
.crt:004FC442
.crt:004FC442 loc_4FC442:
.crt:004FC442
.crt:004FC442 cmp dword ptr [ebx+5], '.23l'
.crt:004FC449 jz short loc_4FC456
.crt:004FC44B cmp dword ptr [ebx+5], '.23L'
.crt:004FC452 jz short loc_4FC456
.crt:004FC454 jmp short increment_ptr_and_cont
.crt:004FC456 ; ---
.crt:004FC456
.crt:004FC456 loc_4FC456:
.crt:004FC456
.crt:004FC456 cmp byte ptr [ebx+0Ch], 0
.crt:004FC45A jz short found_kernel
.crt:004FC45C
.crt:004FC45C increment_ptr_and_cont:
.crt:004FC45C
.crt:004FC45C add edx, 14h
.crt:004FC45F jmp short top_loop
.crt:004FC461 ; --

C Representation of Resolver

This mimics a function in the original packed sample, except its input source comes from a
binary on disk rather than the RAM space of a running image and it is written in C rather
than assembly. This code compiled would be huge compared to the straight-up assembly
version. Also, this version scans for symbols starting at FILE_BEGIN of the binary,
whereas the packed version starts at the ImageBase virtual address. The desired result will
appear like this:

Examining c:\putty.exe

/* Locate Import Directory Table */

DOS magic: 0x5a4d @ [raw:0x0000]
PE header offset: 0xf8 @ [raw:0x003C]
PE magic: 0x4550 @ [raw:0x00f8]
Address of entry point: 0x4265f [raw:0x120]
Raw size difference: 0x0
Import Directory offset: 0x60dd8 @ [raw:0x60dd8]

/* Loop through the Name1 member of all existing
 IMAGE_IMPORT_DESCRIPTOR structures and find the one
 which corresponds to kernel32.dll */

Dissing ADVAPI32.dll @ [raw:0x61380]
Dissing COMCTL32.dll @ [raw:0x6138e]
Dissing comdlg32.dll @ [raw:0x613e2]
Dissing GDI32.dll @ [raw:0x616cc]
Dissing IMM32.dll @ [raw:0x6174a]
Dissing SHELL32.dll @ [raw:0x61764]
Dissing USER32.dll @ [raw:0x61e58]
Dissing WINMM.dll @ [raw:0x61e72]
Dissing WINSPOOL.DRV @ [raw:0x61f06]
Found Kernel32 @ [raw:0x62540]
Saving [raw:0x60e8c] as structure base for Kernel32 import

/* Locate the FirstThunk member of Kernel32's
 IMAGE_IMPORT_DESCRIPTOR structure for a pointer
 to the Import Address Table entry */

Kernel32 FirstThunk: [raw:0x60e9c] -> [raw:0x4b100]
Address of imported function: 0x62516 @ [raw:0x4b100]
find_kernel_32_import returned 0x62516

It shows the raw (on disk) offset and current value of the 32-bit field that will later be
overwritten by a PE loader to contain the virtual address of the first imported function from
kernel32.dll. The assembly version would go on to use this information in order to call
LoadLibrary(). If the target binary is packed or the entry point RVA is otherwise not aligned
with the entry point raw, you will need to set bFixRawSizes to true and manually set the
dwRawSizeDiff formula.

#include<stdio.h>
#include<windows.h>
#include<string.h>

#define bFixRawSizes false
#define MAX_IMPORTS 0x14

DWORD find_kernel32_import(LPCSTR lpBin);

int main(int argc,char *argv[]) {
 DWORD dwAddress = 0;
 LPVOID lpLoadLibrary = 0;
 char bin[0x10] = "c:\\putty.exe";
 fprintf(stdout,"\nExamining %s\n",bin);
 dwAddress = find_kernel32_import(bin);
 fprintf(stdout,"function returned 0x%x\n",dwAddress);
 return true;
}

DWORD find_kernel32_import(LPCSTR lpBin) {
 char aImportedDLL[0xD] = "";
 unsigned int nIterations = 0x0;
 WORD wMagic_DOS = 0x00;
 WORD wMagic_PE = 0x00;
 DWORD dwNumberOfBytesRead = 0,
 dwOffsetToPEHeader = 0,
 dwOffsetToImportStructs = 0,
 dwOffsetToDLLName = 0,
 dwOffsetToFirstThunk = 0,
 dwAddressOfEntryPoint = 0,
 dwRawSizeDiff = 0,
 dwFirstThunkData = 0,
 dwOriginalFirstThunk = 0,
 dwVirtualAddress = 0,
 dwRetValue = 0,
 dwWhateverValue = 0;
 HANDLE hFile;
 BOOL bResult;

 hFile = CreateFile(lpBin,GENERIC_READ,\
 FILE_SHARE_READ,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL);
 if (hFile == INVALID_HANDLE_VALUE)
 return 0x2;

 fprintf(stdout,"\n/* Locate Import Directory Table */\n\n");

 // query and validate the MS-DOS header
 if (SetFilePointer(hFile,NULL,NULL,FILE_BEGIN) == \
 (DWORD)INVALID_HANDLE_VALUE)
 return 0x3;
 if(!ReadFile(hFile,&wMagic_DOS,0x2,&dwNumberOfBytesRead,NULL) \
 || wMagic_DOS != 0x5a4d)
 return 0x4;

 fprintf(stdout,"DOS magic: 0x%x @ [raw:0x0000]\n",wMagic_DOS);

 // query for the raw offset to PE header
 if (SetFilePointer(hFile,0x3C,NULL,FILE_BEGIN) == \
 (DWORD)INVALID_HANDLE_VALUE)
 return 0x5;
 if (!ReadFile(hFile,&dwOffsetToPEHeader,0x4, \

&dwNumberOfBytesRead,NULL))
 return 0x6;

 fprintf(stdout,"PE header offset: 0x%x @ \

[raw:0x003C]\n",dwOffsetToPEHeader);

 // query and validate the PE header
 if (SetFilePointer(hFile,dwOffsetToPEHeader,NULL,FILE_BEGIN) \

 == (DWORD)INVALID_HANDLE_VALUE)
 return 0x7;
 if (!ReadFile(hFile,&wMagic_PE,0x2,&dwNumberOfBytesRead,NULL) \

|| wMagic_PE != 0x4550)
 return 0x8;

 fprintf(stdout,"PE magic: 0x%x @ \
 [raw:0x00%x]\n",wMagic_PE,dwOffsetToPEHeader);

 if (SetFilePointer(hFile,dwOffsetToPEHeader+0x28,NULL, \

FILE_BEGIN) == (DWORD)INVALID_HANDLE_VALUE)
 return 0x99;
 if (!ReadFile(hFile,&dwAddressOfEntryPoint,0x4, \

&dwNumberOfBytesRead,NULL))
 return 0x98;
 fprintf(stdout,"Address of entry point: 0x%x \

[raw:0x%x]\n",dwAddressOfEntryPoint,dwOffsetToPEHeader+0x28);

 if (bFixRawSizes) { // when rva and raw are not aligned
 dwRawSizeDiff = dwAddressOfEntryPoint - 0x3E00;
 }
 else dwRawSizeDiff = 0x0; // rva and raw are aligned
 fprintf(stdout,"Raw size difference: 0x%0x\n",dwRawSizeDiff);

 // query for raw offset of import directory
 if (SetFilePointer(hFile,dwOffsetToPEHeader+0x80,NULL, \

FILE_BEGIN) == (DWORD)INVALID_HANDLE_VALUE)
 return 0x9;
 if (!ReadFile(hFile,&dwOffsetToImportStructs,0x4, \

&dwNumberOfBytesRead,NULL))
 return 0x10;

 fprintf(stdout,"Import Directory offset: 0x%x @ \

[raw:0x%x]\n",dwOffsetToImportStructs, \
dwOffsetToImportStructs-dwRawSizeDiff);

 dwOffsetToImportStructs = dwOffsetToImportStructs - \

dwRawSizeDiff;

 fprintf(stdout,"\n/* Loop through the Name1 member \

of all existing\n");
 fprintf(stdout," IMAGE_IMPORT_DESCRIPTOR structures \

and find the one\n");
 fprintf(stdout," which corresponds to kernel32.dll */\n\n");

 // loop through the Name1 member of
 // IMAGE_IMPORT_DESCRIPTOR structures for kernel32.dll
 for(;;) {
 nIterations++;
 if (nIterations > MAX_IMPORTS) {
 fprintf(stdout,"Past max imports…\n");
 break;
 }
 dwOffsetToDLLName = dwOffsetToImportStructs + 0xC;
 if (SetFilePointer(hFile,dwOffsetToDLLName, \

NULL,FILE_BEGIN) == (DWORD)INVALID_HANDLE_VALUE)
 return 0x11;
 if (!ReadFile(hFile,&dwOffsetToDLLName,0xC, \

&dwNumberOfBytesRead,NULL))
 return 0x12;
 dwOffsetToDLLName -= dwRawSizeDiff;
 if (SetFilePointer(hFile,dwOffsetToDLLName, \

NULL,FILE_BEGIN) == (DWORD)INVALID_HANDLE_VALUE)
 return 0x13;
 if (!ReadFile(hFile,aImportedDLL,0xC, \

&dwNumberOfBytesRead,NULL))
 return 0x14;
 if (stricmp(aImportedDLL,"KERNEL32.dll") == 0) {
 fprintf(stdout,"Found Kernel32 @ \

[raw:0x%x]\n",dwOffsetToDLLName);
 fprintf(stdout,"Saving [raw:0x%x] as \

structure base for Kernel32 import\n",
 dwOffsetToImportStructs);
 break;
 }
 fprintf(stdout,"Dissing %s @ [raw:0x%x]\n", \

aImportedDLL,dwOffsetToDLLName);
 dwOffsetToImportStructs += 0x14; }

 fprintf(stdout,"\n/* Locate the FirstThunk member of \
 Kernel32's\n");
 fprintf(stdout," IMAGE_IMPORT_DESCRIPTOR structure \

for a pointer\n");
 fprintf(stdout," to the Import Address Table entry */\n\n");

 // query for FirstThunk member of IMAGE_IMPORT_DESCRIPTOR
 dwOffsetToFirstThunk = dwOffsetToImportStructs + 0x10;

 if (SetFilePointer(hFile,dwOffsetToFirstThunk,NULL,FILE_BEGIN) \
 == (DWORD)INVALID_HANDLE_VALUE)

 return 0x15;
 if (!ReadFile(hFile,&dwFirstThunkData,0x4, \

&dwNumberOfBytesRead,NULL))
 return 0x16;

 fprintf(stdout,"Kernel32 FirstThunk: [raw:0x%x] -> [raw:0x%x]\n",
 dwOffsetToFirstThunk,dwFirstThunkData-dwRawSizeDiff);

 /* scan to offset pointed to by the FirstThunk which should
 be the virtual address of the first imported function
 from kernel32.dll as resolved by the PE loader at runtime */
 if (SetFilePointer(hFile,dwFirstThunkData,NULL,FILE_BEGIN) \

== (DWORD)INVALID_HANDLE_VALUE)
 return 0x17;
 if (!ReadFile(hFile,&dwVirtualAddress,0x4, \

&dwNumberOfBytesRead,NULL))
 return 0x18;

 fprintf(stdout,"Address of imported function: \

0x%x @ [raw:0x%x]\n", dwVirtualAddress, \
dwFirstThunkData-dwRawSizeDiff);

 return dwVirtualAddress;
}

