

Analysis of MS-07-036
Multiple Excel Vulnerabilities

I. Introduction

This research was conducted using the Office 2003 Excel Viewer application and the
corresponding security patch for MS-07-036 - Vulnerabilities in Microsoft Excel Could
Allow Remote Code Execution. The point is to reverse engineer the patch to verify the
effectiveness of changes made to the code, and also to present the potential vulnerability
points in the un-patched software so that similar bugs are easy to spot in the future. It will
also be useful to know if other versions of Excel (in particular Office 2002 SP-2) that
aren’t mentioned in Microsoft’s advisory are affected, due to end-of-life or other reason.

II. The Vulnerability (well, one of them)

A vulnerability exists because the code fails to check the size of the third parameter to
memmove, which allows a specially crafted Excel file to cause an on-read access
violation past the source buffer or an on-write access violation past the destination buffer.
In the un-patched version of excel.exe for testing (11.0.6412.0) a sub routine exists at
0x30282490. Inside, there is a call to memmove, but more importantly, there are two
paths of execution that lead to that memmove:

You can see, there are blue and green arrows that both point to the location named
vulnerable_memmove. Also, the third parameter, indicated by size_t, is produced by
adding [ebx+ebx]. So, the point is to understand where ebx comes from, and the impact
that it may have on memmove if it isn’t checked properly.

http://office.microsoft.com/downloads/2000/xlviewer.aspx
http://www.microsoft.com/technet/security/Bulletin/MS07-036.mspx
http://www.microsoft.com/technet/security/Bulletin/MS07-036.mspx

In the code block labeled safe_path, ebx is obtained from global_user_value, which is
properly handled in code that precedes the safe_path block. Unfortunately, in the other
path (the green arrow), things are handled less carefully.

Take a look at the un-safe path below. First, if global_user_value is less than or equal to
400h, we branch to safe_path_return and no harm can be done. For the example, let’s
assume that global_user_value is 40000000h. In this case, we don’t branch to
safe_path_return, but instead we encounter the next check.

At the next check, there is validation to see if the 6th argument to the function
(arg_14_user_value) is zero (via the test instruction). At this point, we can’t tell if the
6th argument is a pointer (to any data type) or just a 32 bit number. However looking a
little further at the pointer_not_null location, which is reached as long as
arg_14_user_value is not zero, we do see [edi] being dereferenced, indicating that yes,
the 6th argument is a pointer. Furthermore, it’s being dereferenced in the context of a
compare instruction where the other operand is an integer, so we know it’s a pointer to
numeric data and not to a character buffer or something.

Note that if the arg_14_user_value is zero (NULL), then we branch to the left and will
not reach the vulnerable memmove. As long as the global_user_value (remember our
example is 40000000h) is greater than the value pointed to by arg_14_user_value, then
execution will continue at vulnerable_memmove, where the value of ebx is doubled and
passed as the number of bytes to copy into the destination buffer with memmove.

Our example would try to move 16 gigabytes worth of data (40000000h + 40000000h)
into the destination buffer, because the size parameter to memmove is unsigned. This
would either cause an on-read access violation by tripping off the end of the source page,
or it would cause an on-write access violation by spilling into an invalid memory location
past the buffer.

III. The (Implemented) Solution

Now, take a look at the same function from the patched excel.exe (11.0.8142.0). The sub
routine is at 0x302A1490 in this code. Immediately it’s apparent that there is now only
one direct path to the memmove, and it includes a signed-ness check _after_ the addition
of ebx and _before_ the usage of the resulting value as the size parameter to memmove.
If the result is signed (via test/js, which modifies the signed flag if the high order bit is
set) then we branch to the raise_exception location. I named this location because the
first thing it does is call a wrapper function around the Kernel32.dll RaiseException()
export with exception code 0x0C0000005 (Access Violation).

IV. Additional Vulnerability Points

The function described above is not the only one modified by the MS-07-036 patch, in
fact there are several. Upon inspection, the same type of problem is being fixed by
introducing a signed-ness check and raising an exception if one is encountered. This
permits the assumption that every new call to RaiseException() occurs around a
vulnerable call to memmove. I manually reviewed a few and it is an accurate assumption.

In the un-patched excel.exe, there are three calls to RaiseException(), while, in the
patched version there are eleven, potentially indicating eight different vulnerability points
in the older versions of Excel.

The fix is apparent even in much larger functions:

Some other potential memory corruption issues appear to have been fixed by MS-07-036.
In the un-patched version, a parameter is passed to a sub routine (0x30124970 un-
patched, 0x 30142C89 patched) which appears to be a pointer to a structure that begins
with two 16-bit members followed by a 32-bit member. The 32-bit member is passed to
GlobalAlloc() without being checked, and more importantly, the code doesn’t seem to
halt or handle exceptions efficiently after the handling of this call.

In the example from the un-patched function below, edi points to the structure base. I
don’t bother to reverse this binary far enough to know if the value of [edi+4] is checked
prior to being processed in the point below, because the patch (yet to be shown) tells me
that most likely it isn’t (or else there would be no need to add a check in the patch).

Let’s now take a look at the patched function. Below, note that ebx takes the place of edi
in the previous function and that any values above 0x7FFFFFFF cause an int 3.

In most cases, unless a JIT debugger is set, this should invoke Dr. Watson, essentially
halting the program. In the un-patched version however, execution proceeds into multiple
other functions and it appears the parent function is allowed to return to its calling
function. It seems with this change that the patch just crashes the program immediately
upon encountering an unexpected value.

This introduction of “trap to debugger” interrupts after checking a value before a heap
allocation call is also fairly consistent throughout the patched and un-patched binaries – it
occurs in multiple functions.

In other functions of the code, it is apparent that a potential off-by-one overflow was
fixed. The value 101h is passed to MSO_6877 (Ordinal export #6877 from mso.dll),
which is essentially the size parameter for another memmove operation.

In the patched version, there are some changes, including the size being reduced to 100h.
We can also see some compiler optimization that moved the address of MSO_6877 into
esi register instead of calling it directly. This is because in the fixed version, there is more
than one call to MSO_6877 in the same function and call esi only requires two bytes
worth of instructions. It also changed in the sense that the source and destination buffers
(var_404 and var_204) are now local stack variables, whereas before they were either
heap buffers or local buffers to a calling function.

The size of the two buffers is shown below in the stack view of the patched function.
They are each 512 bytes. These are wide character (Unicode) buffers and 100h is the
maximum number of wide characters (2 bytes each on most systems) that memmove
should write to the destination buffer. 101h as in the un-patched version could result in
202h (514 bytes) – or otherwise, an off-by-one error, which in this case actually leads to
the ability to overwrite two bytes instead of one due to the size of wide characters.

V. Published Excel Proof-Of-Concept

There was a published proof-of-concept on milw0rm dated 2007-06-27 that produces an
on-read access violation in Office 2002 SP-2 Excel. This is one of the versions not
mentioned to be affected by the vulnerabilities presented in MS-07-036 (perhaps because
it is just end-of-life). Either way, as a result, there is no patch available for Office 2002
SP-2 Excel, to address the POC or any of the other vulnerabilities described above.

In the POC, there is simply a NULL pointer deferenced within VBE6.DLL, which
presumably exists due to invalid values within the embedded Visual Basic project. The
vulnerability is triggered even if macros are disabled; however it will not be triggered if a
user chooses ‘No’ upon receiving the error message:

If Excel is allowed to repair the proof-of-concept file by removing the Visual Basic and
ActiveX projects, then the POC is disarmed.

VI. Conclusion

Although it probably goes unsaid, this proves that Office 2002 SP-2 Excel is vulnerable
to at least one of the potential code execution vulnerabilities for which there are no
vendor-provided patches. The Office 2003 releases are also confirmed vulnerable (to one
or more) of the exploitable conditions, which of course only solidifies the vendor
advisory – however in the process of confirming, we had some fun and documented a few
good methods of spotting similar bugs.

http://milw0rm.com/exploits/4121

