
 - 1 -

The Evolution of GPCode/Glamour RansomWare

A file-encrypting information stealer

23-July 2007, v1.0

Secure Science Corporation
7770 Regents Rd.
Suite 113-535
San Diego, CA 92122

(877) 570-0455
http://www.securescience.net/

Confidential Page 1 7/23/2007

 - 2 -

Table of Contents

1 Introduction ...3
2 Brothers from the Same Mother ..4
3 The Ransom Note and Deep Mystery..7
4 Exploring the New Thread...9
5 Decryptor Development...12
6 Making Your Registry l33t ..15
7 References and Tools...16

Confidential Page 2 7/23/2007

 - 3 -

1 Introduction

This report contains a description of the more obscure, previously undocumented traits belonging to the
GPCode/Glamour trojan. The code is a modified version of the Prg/Ntos family which was detailed in
depth during our Encrypted Malware Analysis in November 2006. While a majority of the functionality has
not changed since then, this recent variant is distinctive enough to warrant additional research. In
particular, the trojan is now equipped with the ability to encrypt a victim’s files on disk. The motive for
adding this feature is clearly monetary, as the victim is advised that the files will remain encrypted unless
$300 is turned over to the authors, in exchange for a decryption utility.

This trojan also retains the functionality of hooking API functions to steal information from victims, just like
the older ones. As an update, in the 8 months since November, we’ve recovered stolen data from 51
unique drop sites for use with Intellifound. The 14.5 million records found within these files came from
over 152,000 unique victims.

In the forthcoming analysis, we will explore the key points of interest regarding this new feature. We will
also present how the encryption algorithm was reverse engineered to build our own decryption program,
how users can help protect their file systems in the future, and some interesting tid-bits of information that
is only revealed through binary disassembly.

Source code for the decrytor is available here:
http://securescience.net/securescienceblog/ransom-waredecrypted.html

Confidential Page 3 7/23/2007

http://securescience.net/securescienceblog/malwarecasestudy.html
http://www.securescience.net/home/solutions/global/intellifound.html
http://securescience.net/securescienceblog/ransom-waredecrypted.html

 - 4 -

2 Brothers from the Same Mother

Our first notice of the new trojan was received on July 17, 2007 and was accompanied by a brief
description of its behavior. After reading this summary, which documented the trojan’s interaction with
audio.dll, video.dll, and ntos.exe, we were fairly certain that it was just a new variant of Prg/Ntos.
However, it would be trivial for a “copycat” malware author to produce a trojan which behaves in a similar
manner. To find out for sure, we engaged a binary diff of the Prg/Ntos trojan disassembled during the
Encrypted Malware Analysis of 2006 and the new GPCode/Glamour trojan.

The results indicate that these two trojans, found in the wild nearly 6 months apart, originated from the
same source tree. This could mean that the original authors are actively modifying the code themselves,
or they sold/traded the source code to another group who is now in charge of the modifications. The table
below shows the number of functions added, removed, and unchanged between our two samples:

Functions that exist only in old 5
Functions that exist only in new 105
Functions that exist in both 63 (53 unchanged)

This shows that out of the 168 functions in the new binary, 63 of them exist in Prg/Ntos. Furthermore, 53
of those 63 are direct matches.

As an example, on the following page we show the function which contains the encoding routine for
information stolen out of compromised systems’ HTTP request buffers. This is the section of code which
enabled us to reverse engineer the algorithm and produce a decoder for victim data recovered from blind
drop sites around the world. It is important to note that this function is among the 53 matched ones,
because this means our decoder will remain effective for all data encoded by the new trojans.

In the diagrams, the three primary nodes are labeled with numbers 1, 2, and 3. Although the positioning is
slightly different across the two trojans, they are functionally equivalent.

Confidential Page 4 7/23/2007

http://securescience.net/securescienceblog/malwarecasestudy.html

 - 5 -

Figure 1: Appearance of encoding algorithm in November 2006.

Figure 2: Appearance of encoding algorithm in July 2007.

Through further analysis of the differences, this time focusing on the new functions, we can conclude that
the majority are related to either the file encrypting feature or the socket listener. As far back as
November 2006, right after disassembly of the original Prg/Ntos sample, it was apparent that changes
were already being made to the code. In the final section of the report labeled “New Malware, New
Avenues,” we noted that the socket listener had been added to other discovered variants. Therefore, the
only bonus feature in this recent sample is the ability to encrypt files.

Confidential Page 5 7/23/2007

 - 6 -

In the screen shot below, we show a brief list of the function addresses and names associated with the
new feature. These are not the same names as the original source code; rather we named them
according to their observed behavior after analyzing the function’s composition.

Figure 3: Added functions in the July 2007 sample.

Confidential Page 6 7/23/2007

 - 7 -

3 The Ransom Note and Deep Mystery

Through dynamic analysis (executing the trojan) we can determine that a large number of files on the
target system’s disk are unreadable following the full infection. In each directory on disk, where at least
one file was encrypted, the trojan leaves a ransom note named read_me.txt. The contents of this note
explains that a strong, asymmetric algorithm (4096-bit RSA) was used to encrypt the files and that upon
receiving $300 at an email drop box, the authors will provide a decryption program to restore victims’ files.
The full ransom message is displayed below.

Figure 4: The read_me.txt random message.

It is unacceptable for innocent users to have to pay a price to restore their files, especially when the price
is $300 and the recipients are the attackers. Therefore, we engaged a reverse engineering project to
develop our own decryptor, which will be free of charge to victims, including the relevant source code for
educational purposes of other malware researchers.

In the early stages of research, it was quickly apparent that the files were not really encrypted with 4096-
bit RSA. The encrypted files are all exactly 7 bytes larger than the originals, they all contain a common
header of “GLAMOUR” (that is the extra 7 bytes), and most of them actually contain readable text at the
very end. For example, the following images show the beginning and end appearance of an encrypted

Confidential Page 7 7/23/2007

 - 8 -

file, viewed with a hex editor. At offsets 0x0 – 0x7, the “GLAMOUR” header is shown. At offsets 0x314 –
0x31B (also 7 bytes), we can see the plain text “/* path” at the very end.

Figure 5: The common “GLAMOUR” header of encrypted files.

Figure 6: Visible plain-text at the end of many encrypted files.

If these files were encrypted with RSA, there would not be such characteristics in the output files. So
before we even dive into the binary for clues of the real algorithm, we know it isn’t consistent with the
authors’ claim. This is a bit bewildering, because implementing real 4096-bit RSA is simple and would
have made it extremely difficult, if not impossible, to produce a working decryptor without paying $300.

Confidential Page 8 7/23/2007

 - 9 -

4 Exploring the New Thread

In all variants of this malware, each major feature has its own thread. The file encrypting feature is no
exception. Below is a flow chart of the fairly simplistic thread, with key points of interest marked
individually. On the following page, we describe each key point in greater detail.

Figure 7: Labeled WinGraph-view of the new file encryption thread.

Confidential Page 9 7/23/2007

 - 10 -

At point 1, after calling GetSystemTime(), the trojan’s file encrypting thread returns if the date is earlier
than July 10th. Based on the fact that we got our hands on a copy of this trojan on July 17th, means it
wasn’t around in the wild too long unnoticed. It also indicates that there is a pattern of development in
malware schemes just as there are in any other software vendor’s schedules. For example, the compile
date of the binary is July 5th; and it is hard-coded to be functional shortly after July 10th but not before.
This time was also probably taken to do some testing and to secure a reliable method of distribution. We
can also note that the payment deadline in read_me.txt is July 15th, so there was a heavily planned event
that occurred and flourished rather quickly. The authors expected to get the most scores within the first 5
days of wild time. This is a rather reasonable timeline given that the email drop boxes are hard-coded into
the binary (they must know that it would get reported and shut down before too long).

Figure 8: Time-based decision tree for halting the thread.

At point 2, the WinCode and Win32 values are created and added to the registry, or they are retrieved
from the registry if they already exist. The WinCode entry is of type DWORD and is generated by
mangling the result of GetTickCount() with some proprietary operations. The WinCode is functionally
equivalent to a symmetric key and it is required for successful decryption of the files. The Win32 entry is
also a DWORD and is generated dynamically, so that it can later be used in a switch() statement to
determine which gmail.com drop box it should write in the read_me.txt file.

switch(win32) {
 case 1: // use glamourpalace@gmail.com
 break;
 case 2: // use oxyglamour@gmail.com
 break;
 case 3: // use tristanniglam@gmail.com
 break;
 case 4: // use kiloglamour@gmail.com
 break;
 default: // use “” (empty)
 break;
};

Confidential Page 10 7/23/2007

 - 11 -

At point 3, the GetTempPathW() and GetTempFileNameW() functions are used and the result is where
the thread will temporarily write its list of potential targets. This is essentially a list of files that it plans to
encrypt.

At point 4, two sub functions are called to enumerate the list of potential targets and to engage the
encryption routine (or back-off if the file is already encrypted). When searching for targets, it uses
GetLogicalDrives() to return a list of drive letters such as A, C, and D. Then it calls GetDriveType() for
each letter and skips the entry if it is a CDROM or has no root directory. Otherwise, the recursive search
continues, for any files on the drive that have extensions types matching any of the 232 extensions that
are hard-coded in the binary’s seg001 section.

In the second sub function, the list items are sent to the encryption routine. This is described in greater
detail in the next section.

At point 5, the read_me.txt file is written to disk. Its content is comprised of a hard-coded string in the
seg000 section; using a %s format specifier for the email address and %d for the WinCode (“personal
code”). These are the only two variables in the message.

Confidential Page 11 7/23/2007

 - 12 -

5 Decryptor Development

We built our decryptor by reverse engineering the encryption algorithm, as preserved in the disassembly,
and then by writing the reverse of the encryptor. The encryptor begins by reading the first 7 bytes of the
each target item and checking if it matches “GLAMOUR” (not NULL terminated). This is the universal “I’m
already encrypted, leave me alone” sign. The code then enters a loop, processing up to 10 MB worth of
data in 64K chunks.

The encryption starts with the initialization of a 256-byte key buffer, using a hard-coded source of entropy.
This is done with two for() loops that always fill the buffer according to the following format (even across
different infected machines):

for(int i=0; i<sizeof(key); i++)

key[i] = i + 24;

for(int i=0; i<sizeof(key); i++)
{
 unsigned char a = key[i];
 ga += (a + entropy[i % 24]);
 int b = (int) ga;
 unsigned char c = a;
 a = key[b];
 key[i] = a;
 key[b] = gb = c;
}

After the first for() loop, we’ll have a key buffer that looks like this (break points mark the top and bottom
of the loop):

Figure 9: The 256-byte key buffer after initialization with first for() loop.

Confidential Page 12 7/23/2007

 - 13 -

After the second for() loop, we’ll have a key buffer that looks like this (break points mark the top and
bottom of the loop):

Figure 10: The 256-byte key buffer after initialization with second for() loop.

This initialization is always done before any calls to encryption or decryption functions. It is used as a
read/write lookup table to further manipulate the 24 hard-coded entropy bytes, using each byte from the 4
byte WinCode value (multiple times each) as an encryption key and XOR key. This is where things begin
to change between different infected machines (because the WinCode value will be different). The two
involved functions are shown below, however their corresponding code in the C source code (available
from the Introduction) is condensed into one.

seg000:14E047F2 ; ¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦
seg000:14E047F2
seg000:14E047F2 _encrypt proc near
seg000:14E047F2
seg000:14E047F2 arg_0 = dword ptr 8
seg000:14E047F2
seg000:14E047F2 push ebx
seg000:14E047F3 mov bl, ds:ga
seg000:14E047F9 push [esp+arg_0]
seg000:14E047FD xor bl, byte ptr [esp+4+arg_0]
seg000:14E04801 call _encrypt_sub
seg000:14E04806 pop ecx
seg000:14E04807 mov al, bl

Confidential Page 13 7/23/2007

 - 14 -

seg000:14E04809 pop ebx
seg000:14E0480A retn
seg000:14E0480A _encrypt endp

seg000:14E047B5 ; ¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦
seg000:14E047B5
seg000:14E047B5 _encrypt_sub proc near
seg000:14E047B5
seg000:14E047B5 arg_0 = byte ptr 4
seg000:14E047B5
seg000:14E047B5 movzx eax, [esp+arg_0]
seg000:14E047BA mov dl, ds:key[eax]
seg000:14E047C0 mov cl, ds:ga
seg000:14E047C6 add cl, dl
seg000:14E047C8 movzx ecx, cl
seg000:14E047CB lea ecx, key[ecx]
seg000:14E047D1 push ebx
seg000:14E047D2 mov bl, [ecx]
seg000:14E047D4 mov ds:key[eax], bl
seg000:14E047DA mov [ecx], dl
seg000:14E047DC mov cl, dl
seg000:14E047DE add cl, ds:key[eax]
seg000:14E047E4 mov ds:gb, dl
seg000:14E047EA mov ds:ga, cl
seg000:14E047F0 pop ebx
seg000:14E047F1 retn
seg000:14E047F1 _encrypt_sub endp

Unfortunately, we aren’t done yet (but close!). After all of this, the initialization routine is called again,
executing both for() loops a second time, however in this case, the entropy has been modified with
WinCode. Now is when bytes at offset [7-end] from the file to encrypt is sent through the same _encrypt
function, and we’re done encrypting.

The “GLAMOUR” identification string is written to the beginning of the file, followed by the (now
encrypted) bytes from offset [7-end], followed by the unmodified bytes at offset [0-6]. This is why, in The
Ransom Note and Deep Mystery, we made the observation that the final several bytes of encrypted files
(provided the source was plain text) is readable at the very end – because the first 7 bytes is exempt from
encryption.

Confidential Page 14 7/23/2007

 - 15 -

6 Making Your Registry l33t

Users can protect themselves from these versions by creating a simple registry entry. If the WinCode is
set to 31337, then the trojan will abort the file encrypting thread. This will have no effect on the other
threads in the event that the trojan executes, but it will keep files from being encrypted. At point 2 in
Exploring the New Thread, after querying the registry for (or creating) the WinCode, it is compared with
31337.

seg000:14E04F70 call _install_reg_wincode
seg000:14E04F75 call _install_reg_win32
seg000:14E04F7A push 4
seg000:14E04F7C lea eax, [ebp+wincode]
seg000:14E04F7F push offset wincode_buff
seg000:14E04F84 push eax
seg000:14E04F85 call _format_wincode
seg000:14E04F8A add esp, 0Ch
seg000:14E04F8D cmp [ebp+wincode], 31337
seg000:14E04F94 jz retn_thread

The entry should be a REG_DWORD named WinCode in the HKLM\SOFTWARE\Microsft\Windows
NT\CurrentVersion location, as shown below:

Figure 11: The encryption-halting magic WinCode.

Confidential Page 15 7/23/2007

 - 16 -

7 References and Tools

Trend Micro – an early analysis and detection summary.
http://www.trendmicro.com/vinfo/grayware/ve_graywareDetails.asp?GNAME=TSPY_KOLLAH.F

Prevx – multiple blog entries and a set of decryptor programs.
http://www.prevx.com/blog.asp?ID=52 (ID=51, ID=31)

Blackmailer: the story of Gpcode – how Kaspersky cracked an older ransomware.
http://www.viruslist.com/en/analysis?pubid=189678219

[Tools] SABRE BinDiff – binary diffing utility, http://www.sabre-security.com/products/bindiff.html
[Tools] IDA Pro – disassembler, http://www.datarescue.com
[Tools] OllyDbg – debugger, http://www.ollydbg.de
[Tools] FlexHex – hex editor, http://www.flexhex.com
[Tools] Snippy – screen acquisition, http://www.bhelpuri.net/Snippy

Confidential Page 16 7/23/2007

http://www.trendmicro.com/vinfo/grayware/ve_graywareDetails.asp?GNAME=TSPY_KOLLAH.F
http://www.prevx.com/blog.asp?ID=52
http://www.viruslist.com/en/analysis?pubid=189678219
http://www.sabre-security.com/products/bindiff.html
http://www.datarescue.com/
http://www.ollydbg.de/
http://www.flexhex.com/
http://www.bhelpuri.net/Snippy

	1 Introduction
	2 Brothers from the Same Mother
	3 The Ransom Note and Deep Mystery
	4 Exploring the New Thread
	5 Decryptor Development
	6 Making Your Registry l33t
	7 References and Tools

