Analysis of ANI “anih” Header
Stack Overflow Vulnerability,
Microsoft Security Advisory 935423

With help from Andre (Dre) and
various other members of mal-aware

i

A awre® S

i A
- —

SOME HIGHTS RESERVED

http://www.mal-aware.org/

This is a really, really rough explanation of the exploit and the actions performed to
research the vulnerability.

There are several malicious ANI files in circulation. The one to discuss is mm.jpg from
newasp, but others are likely very similar. Shellcode in mm.jpg basically resolves
kernel32 functions, downloads, and executes xx.exe (from behavioral analysis). It doesn’t
do much but delete the system’s HOSTS file, write bdscheca001.dll to %SYSTEM%, and
registers the DLL as ShellExecuteHooks entry.

This means whenever a process calls ShellExecute() or ShellExecuteEx(), the new DLL

will be loaded into that process’ address space and its startup routine will be executed. So
practically everything is going to call one of these two functions eventually. It will result
in all processes being trojanized. Here is a view of the xx.exe sections (who is MrOwen?)
and the hooked process list.

- ®¥ . eHe
Header
Data Directory
- Sections
ByMrOwen
ByMrOwen
L TEYC
ByMrOwen
- Import=
Strings
- Process Explorer Search
DLL substiing: | bds
Process i DLL
TGN ST, BHE 6 e IMD DWW S haetem32hbdschecall dl
ClamTray. exe 932 C:AIMD DWW Shayetem32hbdechecall . dl
jucheck. exe 1066 C:WMDOWS eystemn32ibdzchecall di
wachtfy, eme 116 ChWIMDOWS seystem32hbdzchecalll di
MNawaPW 32 ExE 1186 CAWINDOWSheystem32\bdzchecallt . dil
explarer. exe 1920 CANWIMDOWS ssystem32hbdzchecalll di
rundll32. exe 2004 CAWIMDOWShepstem32tbdzchecalld . dll
iTunezHelper. exe 2040 CAWIMDOWShepstem32ibdzchecalll dll
F.EM. exe 2272 CNWINDOWS aystem32hbdzchecalll dl
KHALMMPR. exe 2304 CRWINMDOWSseystem32hbdzchecalll di
tazkmar. exe 2392 ChNWINDOWS system32hbdzchecalll di
rdpclip.exe 2896 ChWWIMDOWS system32hbdzchecalll di
YITINETE, EHE 2992 CANWINDDWSeystem32hbdzchecall i
Snippyp.exe 3092 CAWINDOWShepsten32tbdzchecalll dll
[Spztem Process] 3396 CAWINDOWShepsten32tbdzchecall dll
PROCEXP.ExE 3396 CAWWINDOWSheysten32\bdzchecal0t .

SOME HIGHTE RESERVED

Anyway, the point is to find the vulnerability, not analyze the payload, so | have no idea
what bdscheca001.dll does. While waiting on a few things, we looked in the mm.jpg at
the shellcode. It’s pretty obvious where it starts in the file — it starts around OxAS8.

UHUUUESE [67 6F 67 68 52 U0 U0 09 30 371 32 33 3JW IdT 32 33 | anIhR ©TZ30TZ9 |
gepaoa6A (38 31 32 33 38 31 32 33 30 31 32 33 36 31 32 33 | 912381236012308123
080@a0a7A | 38 31 32 33 30 31 32 33 00 34 34 34 34 34 34 34 | 81230123 Hhhihhh
4| B080B088A | 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 | B4ALLALhL Ly
00000898 | 34 34 34 34 00 00 90 09 00 00 60 A8 60 00 08 90 | 444y

TSTSSTS LS Tols IS TSRS TS RS TS ST I TSRS TSRS TSl BA 25 8B EC 64 8B 15 38
GEEEGEGSNE 60 80 60 8D 52 03 80 34 61 OF B4 C8 00 00 08 Cb R
SELEGTHGNE 62 81 E8 4B 61 00 60 48 080 83 80 60 6A 00 FF DO 2K

So do a little translation with IDA and now we know that it just resolves Kernel32
exports. Most important, it finds GlobalAlloc() before any others, and allocates 0x300
bytes of memory.

seqfoa:foeenens mov edx, GHECEBZSh
ceqBA0: 0068086870 mov edx, ds:dword_38
ceqB@0: 000000683 lea edx, [edx+3]

seqBdf: 000808686 cmp byte pty [edx], 1
seqf0dd:00e06BY jz loc_187

seqB00: 000086BF mou byte ptr [edx], 1
seqBdfd: geaeaac?? call GetGlobalAllocAddress
seqB0a:feeenacy push

seqB@0: 008086CC push a

seqBdf: 088888CE call eax ; GlobalAlloc(@,@x308)
seqAoa:feesoepo mov ECX,

seqAAA: AAABBBDS mov edi, eax
seqB@0:0068088D7 jmp short loc DE

So, now we have a good start. Opening IE in a debugger, a breakpoint is set on
GlobalAlloc(). Now we can access the HTML file that loads the malicious cursor. There
are easier ways, like maybe setting OXCC as the first byte at 0XA8 offset and catching a
break there, but as we will learn soon, this will really break things bad. There are about
30 calls to GlobalAlloc() that we just have to play past until eventually we encounter one
where the memory size argument is 0x300, just like in the shellcode. This isn’t foolproof
(maybe other calls allocate 0x300 bytes, but in our case, the first encounter is the correct
one.

If we “execute until return” once inside GlobalAlloc(), our EIP ends up on the heap. The
question is — how did we get here...why is EIP on the heap. If we look down on the
stack, some return addresses are inside user32.dll.

HATZCEZ4 | BERaeaaal| Flaos = GMEM_FIRED
FATZCEEE) ARRRESEE|(LMenSize = 388 (FES.)
BA13CF3C| FrD825ED|RETURN to USERZ:2. FYODEZSED
HETECF4E| BEl20B6d
BEIZCF44) BERRGRG1E
BEIZCF42) BERRBEGEE
FEIZCF4C) BERREEZS
HETZCFEE| BEBAFFEF
FETZCFES | BEEREEED
BETZCFES) BEEREEEE
BEIZCFEC] ARRAREEE

AR 1 SCF 38 TN [EHLL to GlobalAlloc from B2CSABECE "

SOME HIGHTE RESERVED

So let’s see what is at this address inside user32.dll:

* .text:F7DB25n8 jz short loc_ 77D825CA
* _text:77DB25AR push eax

* _text:77D825AB push [ebp+arg_8]

* .text:F7DB25AE push esi

* text:77DB2SAF call _HLLine@8 ; HLLine(x®,x)
* _text:77D825BA4 push eax

* .text:77DB25BS push edi

* .text:F7DB25B6 push [ebp+arg_4]

* _text:77D825B9 push esi

* .text:77DB25BA call dword ptr [ebx+4]
* Ltext:77DB2SBD mou edi, eax

Basically, there is a call [ebx+4] right before the return address we know. So this
indicates that EIP was at this call sometime close before it got redirected to the heap. My
first assumption is that the vulnerability is inside _MLLine or inside the parent function.
But, putting breakpoints on either function fails, and the whole exploit still works. So
strangely, this means that somehow EIP ends up at the call [ebx+4], in the middle of the
function, without ever starting at the beginning of the parent function.

From here, we back-traced a little to return addresses further down on the stack and found
the point where user32.dll opens our mm.jpg and reads it using MapViewOfFile(). It
happens inside the RtILoadObjectFromDIBFile() function. We can confirm, because after
mapping the file, it checks the headers of the alleged ANI file. If the header is valid, it
goes on to call LoadCursorlconFromFileMap().

vy

EAN 1

check_RIFF_hdy:

mouv [ebp+uvar_L478], eax

cmp dword ptr [eax], ‘FFIR®

jz found_RIFF_hdr

I
found_RIFF_hdy:
lea eax, [ebp+var_ u88] | -
push eax
push duword ptr [ebp+i18h]
push [ebp+cyDesired]
push [ebp+cxDesired]
lea eax, [ebp+var_hi3h]
push eax
lea eax, [ebp+lpBasefnddress]
push eax
call _LoadCursorIconFromFileMap@2y ; LoadCursorIconFromFileMapi{x,x,%,%,%,%)
jmp loc 77D595F4
; END OF FUNCTION CHUNK FOR _RtlLoadObjectFromDIBFile@28
I

SOME HIGHTS RESERVED

Its important to note that jumping over the LoadCursorlconFromFileMap() function from
within RtILoadObjectFromDIBFile() will execute the exploit. This is good verification
though that the vulnerability is getting closer — now we know it exists inside
LoadCursorlconFromFileMap() and not some other function that
RtlLoadObjectFromDIBFile() calls.

With a little more back-trace, we can narrow it down even further. It turns out that
LoadCursorlconFromFileMap() calls a sub function too (several, actually) called
LoadAnilcon(). Check out the state of things right before the call to this sub function.
Notice how the next instruction after the call is 0x77D842C5. This *should* be the return
address when LoadAnilcon() finishes.

.;,ﬂ Immunity Debugger - iexplore.exe - [CPU - main thread, modul.. E]@.
File Miew Debug Plugins Immdbalib Opkions Window Help =

JJJJ JJ JJ il ¥ ¥4d A o MHJJJEH

Registers [FPU]

Hddress

Breakpoint at USER 32 77D 842C0 Fauzed

Just for a sanity check, step inside the function and see what is pushed on the stack:

7
5]
Al
5]
5]
5]
A
[

Yep, we should return to 0x77D842C5. Let’s fast forward a bit by using “execute until
return” and take another look at the stack.

©

SOE FIGHTS RESERVED

B 1 SCF 25
E 2

5 Fal_

So, the bottom 2 bytes of the return address is overwritten by something inside
LoadAnilcon(). We no longer will return to code in LoadCursorlconFromFileMap().
Instead, we go to 0x77D825BA, which is — guess what — the address of that call [ebx+4]
instruction. This is proof that sometimes when you can’t overwrite an arbitrary 4 bytes of
address to gain control, even an arbitrary 2 bytes will work. Now where did those bytes
come from, eh? We’re looking for a strict 0x25BA, or some value that is later added,
subtracted, multiplied, etc to turn into 0x25BA.

It’s easy this time, as the 0x25BA is right inside the malformed ANI file. Someone did
their homework and studied the addresses pretty well. I’m going to re-use the same
screen shot as the one above...can you spot the bytes?

UUUUUESH | 67 6F 6% o8 5F U0 U0 09 30 31 37 33 3W IT 37 33 | anihR ©TZ30TZ3 |
00806868 | 38 31 32 33 30 31 32 33 3031 32 33 36 31 32 33 | 123012301230123
088066878 | 38 31 32 33 30 31 32 33 08 34 34 34 34 34 34 34 | 61230123 Lahhhhh
4| 00800088 | 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 | ALLLARLLLLLRLLLY
00806098 | 34 34 34 34 OO0 OO0 G0 69 OO0 00 60 GO0 00 00 08 B0 | Luhh

SRS SRS Tel O TR STS S L RS T IS TS5 B 25 BB EC 64 8B 15 308
GEEGE N 60 A0 A0 8D 52 63 80 30 61 OF B4 C8 060 00 88 C6 R
GEGEGHGNE 62 A1 ES 4B 61 660 68 68 60 63 60 A8 G6A 66 FF DB BK

Yep, they are the first two bytes of what we labeled as the shellcode before. At some
point in LoadAnilcon(), there is a copy or move function that allows these bytes to
overwrite some of the return address. Now look up in the screen shot where the image is
almost cut off (around 0x54 offset) and you will see “52 00 00 00” — which is right after
the “anih” header signature. This “52 00 00 00 is the size of the “anih” header chunk.
This value is 0x52 really or decimal 82 bytes. If you count, this 82 bytes starts right after
the size itself, which is at “30 31 32 33” and goes all the way to include the first two
bytes of the highlighted area (0XBA25).

So the vulnerability occurs because there is a statically-sized buffer on the stack to hold
an “anih” chunk, but it takes the size of the “anih” chunk from the malformed ANI file
itself, and doesn’t check to see if the specified size will fit. The malformed ANI we know
about says that the chunk size is 0x52 bytes and this is too big. The extra bytes overwrite
part of the LoadAnilcon() return address and force execution to a location with user32.dll
that calls [ebx+4]. Conveniently, [ebx+4] points to the start of shellcode contained within
mm.jpg (everything after the OXBAZ25, start is highlighted below):

SONIE FIGHTS RESERVED

& - Bl

File Stream Edit Search Mavigate Mjew Tools Window Help
P E e B oo g B0 XS MMM e

& jpg X

[] BO0008A6AA | 52 40 45 46 13 63 60 60 41 43 4F 4E 61 6FE 69 68 A
fOpfaea16 | 24 00 B0 BA 2?4 OO0 OO 60 FF FF 68 60 A9 80 80 64
BB00BA620 | 00 B0 0O A 0O 00 OO 60 060 60 60 B0 A0 80 B0 B4
‘| 00OEOO30 | 04 0O B0 OO 61 60 B0 BA 54 53 49 4C 03 00 0O 00
BA00BA40 | 00 B0 B0 B8 54 53 49 4C A4 60 60 A0 @82 @82 82 B2
BA0aBae5e | 61 6E 69 68 52 68 68 68 36 31 32 33 360 31 32 33
gapaea6a | 38 31 32 33 38 31 32 33 38 31 32 33 360 31 32 33
gooeee7e | 30 31 32 33 30 31 32 33 06 34 34 34 34 34 34 34
g0000680 | 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
B0006846948 | 24 34 34 34 060 60 G0 60 60 60 60 60 00 80 B840 64
AA0ABoA0 | G0 B0 OO A 090 08 60 60 Bn 25 8B EC 64 8B 15 34
HA0OBOE3 | 60 60 B0 8D 52 63 BB 3A 61 OF 84 CEB 00 80 808 C6 .,

The fix for this is pretty easy, but not easy to detect. We’re basically looking for some
DWORD-sized value after an “anih” header that is larger than the buffer on the stack. All
for now.

SONIE FIGHTS RESERVED

